Asymptotic Behaviour of Colength of Varieties of Lie Algebras
Serdica Mathematical Journal, Tome 26 (2000) no. 2, pp. 145-154
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We study the asymptotic behaviour of numerical characteristics
of polynomial identities of Lie algebras over a field of characteristic 0. In
particular we investigate the colength for the cocharacters of polynilpotent
varieties of Lie algebras. We prove that there exist polynilpotent Lie varieties
with exponential and overexponential colength growth. We give the exact
asymptotics for the colength of a product of two nilpotent varieties.
Keywords:
Lie Algebras With Polynomial Identities, Varieties Of Lie Algebras, Codimensions, Colength
@article{SMJ2_2000_26_2_a4,
author = {Mishchenko, S. and Zaicev, M.},
title = {Asymptotic {Behaviour} of {Colength} of {Varieties} of {Lie} {Algebras}},
journal = {Serdica Mathematical Journal},
pages = {145--154},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a4/}
}
Mishchenko, S.; Zaicev, M. Asymptotic Behaviour of Colength of Varieties of Lie Algebras. Serdica Mathematical Journal, Tome 26 (2000) no. 2, pp. 145-154. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a4/