The JNR Property and the Borel Structure of a Banach Space
Serdica Mathematical Journal, Tome 26 (2000) no. 1, pp. 13-32.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we study the property of having a countable cover by sets of small local diameter (SLD for short). We show that in the context of Banach spaces (JNR property) it implies that the Banach space is Cech-analytic. We also prove that to have the JNR property, to be σ- fragmentable and to have the same Borel sets for the weak and the norm topologies, they all are topological invariants of the weak topology. Finally, by means of “good” injections into c0 (Γ), we give a great class of Banach spaces with the JNR property.
Keywords: Borel Sets, Countable Cover By Sets Of Small Local Diameter, Topological Invariants Of The Weak Topology
@article{SMJ2_2000_26_1_a2,
     author = {Oncina, L.},
     title = {The {JNR} {Property} and the {Borel} {Structure} of a {Banach} {Space}},
     journal = {Serdica Mathematical Journal},
     pages = {13--32},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_1_a2/}
}
TY  - JOUR
AU  - Oncina, L.
TI  - The JNR Property and the Borel Structure of a Banach Space
JO  - Serdica Mathematical Journal
PY  - 2000
SP  - 13
EP  - 32
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_1_a2/
LA  - en
ID  - SMJ2_2000_26_1_a2
ER  - 
%0 Journal Article
%A Oncina, L.
%T The JNR Property and the Borel Structure of a Banach Space
%J Serdica Mathematical Journal
%D 2000
%P 13-32
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2000_26_1_a2/
%G en
%F SMJ2_2000_26_1_a2
Oncina, L. The JNR Property and the Borel Structure of a Banach Space. Serdica Mathematical Journal, Tome 26 (2000) no. 1, pp. 13-32. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_1_a2/