The Interval [0,1] Admits no Functorial Embedding into a Finite-Dimensional or Metrizable Topological Group
Serdica Mathematical Journal, Tome 26 (2000) no. 1, pp. 1-4
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
An embedding X ⊂ G of a topological space X into a topological group G is called functorial if every homeomorphism of X extends
to a continuous group homomorphism of G. It is shown that the interval [0, 1] admits no functorial embedding into a finite-dimensional or metrizable
topological group.
Keywords:
Topological Group, Functorial Embedding
@article{SMJ2_2000_26_1_a0,
author = {Banakh, Taras and Zarichnyi, Michael},
title = {The {Interval} [0,1] {Admits} no {Functorial} {Embedding} into a {Finite-Dimensional} or {Metrizable} {Topological} {Group}},
journal = {Serdica Mathematical Journal},
pages = {1--4},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_1_a0/}
}
TY - JOUR AU - Banakh, Taras AU - Zarichnyi, Michael TI - The Interval [0,1] Admits no Functorial Embedding into a Finite-Dimensional or Metrizable Topological Group JO - Serdica Mathematical Journal PY - 2000 SP - 1 EP - 4 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_1_a0/ LA - en ID - SMJ2_2000_26_1_a0 ER -
%0 Journal Article %A Banakh, Taras %A Zarichnyi, Michael %T The Interval [0,1] Admits no Functorial Embedding into a Finite-Dimensional or Metrizable Topological Group %J Serdica Mathematical Journal %D 2000 %P 1-4 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SMJ2_2000_26_1_a0/ %G en %F SMJ2_2000_26_1_a0
Banakh, Taras; Zarichnyi, Michael. The Interval [0,1] Admits no Functorial Embedding into a Finite-Dimensional or Metrizable Topological Group. Serdica Mathematical Journal, Tome 26 (2000) no. 1, pp. 1-4. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_1_a0/