Alternative Characterization of the Class k-UCV and Related Classes of Univalent Functions
Serdica Mathematical Journal, Tome 25 (1999) no. 4, pp. 341-350.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper an alternative characterization of the class of functions called k -uniformly convex is found. Various relations concerning connections with other classes of univalent functions are given. Moreover a new class of univalent functions, analogous to the ’Mocanu class’ of functions, is introduced. Some results concerning this class are derived.
Keywords: Univalent Functions, Convex Functions, Starlike Functions of Order β, α-Convex Functions, Uniformly Convex Functions, Uniformly Starlike Functions, K-uniformly Convex Functions, K-Starlike Functions
@article{SMJ2_1999_25_4_a5,
     author = {Kanas, Stanislawa},
     title = {Alternative {Characterization} of the {Class} {k-UCV} and {Related} {Classes} of {Univalent} {Functions}},
     journal = {Serdica Mathematical Journal},
     pages = {341--350},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a5/}
}
TY  - JOUR
AU  - Kanas, Stanislawa
TI  - Alternative Characterization of the Class k-UCV and Related Classes of Univalent Functions
JO  - Serdica Mathematical Journal
PY  - 1999
SP  - 341
EP  - 350
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a5/
LA  - en
ID  - SMJ2_1999_25_4_a5
ER  - 
%0 Journal Article
%A Kanas, Stanislawa
%T Alternative Characterization of the Class k-UCV and Related Classes of Univalent Functions
%J Serdica Mathematical Journal
%D 1999
%P 341-350
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a5/
%G en
%F SMJ2_1999_25_4_a5
Kanas, Stanislawa. Alternative Characterization of the Class k-UCV and Related Classes of Univalent Functions. Serdica Mathematical Journal, Tome 25 (1999) no. 4, pp. 341-350. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a5/