Null Condition for Semilinear Wave Equation with Variable Coefficients
Serdica Mathematical Journal, Tome 25 (1999) no. 4, pp. 321-340.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this work we analyse the nonlinear Cauchy problem (∂tt − ∆)u(t, x) = ( λg + O(1/(1 + t + |x|)^a) ) ) ∇t,x u(t, x), ∇t,x u(t, x) ), whit initial data u(0, x) = e u0 (x), ut (0, x) = e u1 (x). We assume a ≥ 1, x ∈ R^n (n ≥ 3) and g the matrix related to the Minkowski space. It can be considerated a pertubation of the case when the quadratic term has constant coefficient λg (see Klainerman [6]) We prove a global existence and uniqueness theorem for very regular initial data. The proof avoids a direct application of Klainermann method (Null condition, energy conformal method), because the result is obtained by a combination beetwen the energy estimate (norm L^2 ) and the decay estimate (norm L^∞ ).
@article{SMJ2_1999_25_4_a4,
     author = {Catalano, Fabio},
     title = {Null {Condition} for {Semilinear} {Wave} {Equation} with {Variable} {Coefficients}},
     journal = {Serdica Mathematical Journal},
     pages = {321--340},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a4/}
}
TY  - JOUR
AU  - Catalano, Fabio
TI  - Null Condition for Semilinear Wave Equation with Variable Coefficients
JO  - Serdica Mathematical Journal
PY  - 1999
SP  - 321
EP  - 340
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a4/
LA  - en
ID  - SMJ2_1999_25_4_a4
ER  - 
%0 Journal Article
%A Catalano, Fabio
%T Null Condition for Semilinear Wave Equation with Variable Coefficients
%J Serdica Mathematical Journal
%D 1999
%P 321-340
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a4/
%G en
%F SMJ2_1999_25_4_a4
Catalano, Fabio. Null Condition for Semilinear Wave Equation with Variable Coefficients. Serdica Mathematical Journal, Tome 25 (1999) no. 4, pp. 321-340. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a4/