Null Condition for Semilinear Wave Equation with Variable Coefficients
Serdica Mathematical Journal, Tome 25 (1999) no. 4, pp. 321-340
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this work we analyse the nonlinear Cauchy problem
(∂tt − ∆)u(t, x) = ( λg + O(1/(1 + t + |x|)^a) ) ) ∇t,x u(t, x), ∇t,x u(t, x) ),
whit initial data u(0, x) = e u0 (x), ut (0, x) = e u1 (x). We assume a ≥ 1,
x ∈ R^n (n ≥ 3) and g the matrix related to the Minkowski space. It can be
considerated a pertubation of the case when the quadratic term has constant
coefficient λg (see Klainerman [6])
We prove a global existence and uniqueness theorem for very regular initial
data. The proof avoids a direct application of Klainermann method (Null
condition, energy conformal method), because the result is obtained by a
combination beetwen the energy estimate (norm L^2 ) and the decay estimate
(norm L^∞ ).
@article{SMJ2_1999_25_4_a4,
author = {Catalano, Fabio},
title = {Null {Condition} for {Semilinear} {Wave} {Equation} with {Variable} {Coefficients}},
journal = {Serdica Mathematical Journal},
pages = {321--340},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a4/}
}
Catalano, Fabio. Null Condition for Semilinear Wave Equation with Variable Coefficients. Serdica Mathematical Journal, Tome 25 (1999) no. 4, pp. 321-340. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a4/