Topological Dichotomy and Unconditional Convergence
Serdica Mathematical Journal, Tome 25 (1999) no. 4, pp. 297-310
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper, we give a criterion for unconditional convergence
with respect to some summability methods, dealing with the topological size
of the set of choices of sign providing convergence. We obtain similar results
for boundedness. In particular, quasi-sure unconditional convergence implies
unconditional convergence.
Keywords:
Banach Space, Unconditional Convergence, Sidon Sets, Quasi-Sure Convergence
@article{SMJ2_1999_25_4_a2,
author = {Lefevre, Pascal},
title = {Topological {Dichotomy} and {Unconditional} {Convergence}},
journal = {Serdica Mathematical Journal},
pages = {297--310},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a2/}
}
Lefevre, Pascal. Topological Dichotomy and Unconditional Convergence. Serdica Mathematical Journal, Tome 25 (1999) no. 4, pp. 297-310. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_4_a2/