Geometric Stable Laws Through Series Representations
Serdica Mathematical Journal, Tome 25 (1999) no. 3, pp. 241-256
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Let (Xi ) be a sequence of i.i.d. random variables, and let
N be a geometric random variable independent of (Xi ). Geometric stable
distributions are weak limits of (normalized) geometric compounds, SN =
X1 + · · · + XN , when the mean of N converges to infinity. By an appropriate
representation of the individual summands in SN we obtain series
representation of the limiting geometric stable distribution. In addition, we
study the asymptotic behavior of the partial sum process SN (t) = ⅀( i=1 ... [N t] ) Xi ,
and derive series representations of the limiting geometric stable process
and the corresponding stochastic integral. We also obtain strong invariance
principles for stable and geometric stable laws.
Keywords:
Geometric Compound, Invariance Principle, Linnik Distribution, Mittag-Leffler Distribution, Random Sum, Stable Distribution, Stochastic Integral
@article{SMJ2_1999_25_3_a3,
author = {Kozubowski, Tomasz and Podg\'orski, Krzysztof},
title = {Geometric {Stable} {Laws} {Through} {Series} {Representations}},
journal = {Serdica Mathematical Journal},
pages = {241--256},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_3_a3/}
}
TY - JOUR AU - Kozubowski, Tomasz AU - Podgórski, Krzysztof TI - Geometric Stable Laws Through Series Representations JO - Serdica Mathematical Journal PY - 1999 SP - 241 EP - 256 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_1999_25_3_a3/ LA - en ID - SMJ2_1999_25_3_a3 ER -
Kozubowski, Tomasz; Podgórski, Krzysztof. Geometric Stable Laws Through Series Representations. Serdica Mathematical Journal, Tome 25 (1999) no. 3, pp. 241-256. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_3_a3/