On the Uniform Decay of the Local Energy
Serdica Mathematical Journal, Tome 25 (1999) no. 3, pp. 191-206
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
It is proved in [1],[2] that in odd dimensional spaces any uniform decay
of the local energy implies that it must decay exponentially. We
extend this to even dimensional spaces and to more general perturbations
(including the transmission problem) showing that any uniform decay of the
local energy implies that it must decay like O(t^(−2n) ), t ≫ 1 being the time
and n being the space dimension.
Keywords:
Cutoff Resolvent, Local Energy Decay
@article{SMJ2_1999_25_3_a1,
author = {Vodev, Georgi},
title = {On the {Uniform} {Decay} of the {Local} {Energy}},
journal = {Serdica Mathematical Journal},
pages = {191--206},
year = {1999},
volume = {25},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_3_a1/}
}
Vodev, Georgi. On the Uniform Decay of the Local Energy. Serdica Mathematical Journal, Tome 25 (1999) no. 3, pp. 191-206. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_3_a1/