On the Uniform Decay of the Local Energy
Serdica Mathematical Journal, Tome 25 (1999) no. 3, pp. 191-206.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

It is proved in [1],[2] that in odd dimensional spaces any uniform decay of the local energy implies that it must decay exponentially. We extend this to even dimensional spaces and to more general perturbations (including the transmission problem) showing that any uniform decay of the local energy implies that it must decay like O(t^(−2n) ), t ≫ 1 being the time and n being the space dimension.
Keywords: Cutoff Resolvent, Local Energy Decay
@article{SMJ2_1999_25_3_a1,
     author = {Vodev, Georgi},
     title = {On the {Uniform} {Decay} of the {Local} {Energy}},
     journal = {Serdica Mathematical Journal},
     pages = {191--206},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_3_a1/}
}
TY  - JOUR
AU  - Vodev, Georgi
TI  - On the Uniform Decay of the Local Energy
JO  - Serdica Mathematical Journal
PY  - 1999
SP  - 191
EP  - 206
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1999_25_3_a1/
LA  - en
ID  - SMJ2_1999_25_3_a1
ER  - 
%0 Journal Article
%A Vodev, Georgi
%T On the Uniform Decay of the Local Energy
%J Serdica Mathematical Journal
%D 1999
%P 191-206
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1999_25_3_a1/
%G en
%F SMJ2_1999_25_3_a1
Vodev, Georgi. On the Uniform Decay of the Local Energy. Serdica Mathematical Journal, Tome 25 (1999) no. 3, pp. 191-206. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_3_a1/