Some Computational Aspects of the Consistent Mass Finite Element Method for a (semi-)periodic Eigenvalue Problem
Serdica Mathematical Journal, Tome 25 (1999) no. 2, pp. 177-184
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We consider a model eigenvalue problem (EVP) in 1D, with
periodic or semi–periodic boundary conditions (BCs). The discretization of
this type of EVP by consistent mass finite element methods (FEMs) leads to
the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric
matrices, with a certain (skew–)circulant structure. In this paper we fix our
attention to the use of a quadratic FE–mesh. Explicit expressions for the
eigenvalues of the resulting algebraic EVP are established. This leads to an
explicit form for the approximation error in terms of the mesh parameter,
which confirms the theoretical error estimates, obtained in [2].
Keywords:
Eigenvalue Problems, Periodic Boundary Conditions, Circulant Matrices
@article{SMJ2_1999_25_2_a5,
author = {De Schepper, H.},
title = {Some {Computational} {Aspects} of the {Consistent} {Mass} {Finite} {Element} {Method} for a (semi-)periodic {Eigenvalue} {Problem}},
journal = {Serdica Mathematical Journal},
pages = {177--184},
year = {1999},
volume = {25},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a5/}
}
TY - JOUR AU - De Schepper, H. TI - Some Computational Aspects of the Consistent Mass Finite Element Method for a (semi-)periodic Eigenvalue Problem JO - Serdica Mathematical Journal PY - 1999 SP - 177 EP - 184 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a5/ LA - en ID - SMJ2_1999_25_2_a5 ER -
De Schepper, H. Some Computational Aspects of the Consistent Mass Finite Element Method for a (semi-)periodic Eigenvalue Problem. Serdica Mathematical Journal, Tome 25 (1999) no. 2, pp. 177-184. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a5/