On the Maximum of a Branching Process Conditioned on the Total Progeny
Serdica Mathematical Journal, Tome 25 (1999) no. 2, pp. 141-176
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The maximum M of a critical Bienaymé-Galton-Watson process
conditioned on the total progeny N is studied. Imbedding of the process in
a random walk is used. A limit theorem for the distribution of M as N → ∞
is proved. The result is trasferred to the non-critical processes. A corollary
for the maximal strata of a random rooted labeled tree is obtained.
Keywords:
Bienaymé-Galton-Watson Branching Process, Maximum, Total Progeny, Left-Continuous Random Walk, Random Rooted Labeled Trees
@article{SMJ2_1999_25_2_a4,
author = {Kerbashev, Tzvetozar},
title = {On the {Maximum} of a {Branching} {Process} {Conditioned} on the {Total} {Progeny}},
journal = {Serdica Mathematical Journal},
pages = {141--176},
year = {1999},
volume = {25},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a4/}
}
Kerbashev, Tzvetozar. On the Maximum of a Branching Process Conditioned on the Total Progeny. Serdica Mathematical Journal, Tome 25 (1999) no. 2, pp. 141-176. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a4/