On the Maximum of a Branching Process Conditioned on the Total Progeny
Serdica Mathematical Journal, Tome 25 (1999) no. 2, pp. 141-176.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The maximum M of a critical Bienaymé-Galton-Watson process conditioned on the total progeny N is studied. Imbedding of the process in a random walk is used. A limit theorem for the distribution of M as N → ∞ is proved. The result is trasferred to the non-critical processes. A corollary for the maximal strata of a random rooted labeled tree is obtained.
Keywords: Bienaymé-Galton-Watson Branching Process, Maximum, Total Progeny, Left-Continuous Random Walk, Random Rooted Labeled Trees
@article{SMJ2_1999_25_2_a4,
     author = {Kerbashev, Tzvetozar},
     title = {On the {Maximum} of a {Branching} {Process} {Conditioned} on the {Total} {Progeny}},
     journal = {Serdica Mathematical Journal},
     pages = {141--176},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a4/}
}
TY  - JOUR
AU  - Kerbashev, Tzvetozar
TI  - On the Maximum of a Branching Process Conditioned on the Total Progeny
JO  - Serdica Mathematical Journal
PY  - 1999
SP  - 141
EP  - 176
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a4/
LA  - en
ID  - SMJ2_1999_25_2_a4
ER  - 
%0 Journal Article
%A Kerbashev, Tzvetozar
%T On the Maximum of a Branching Process Conditioned on the Total Progeny
%J Serdica Mathematical Journal
%D 1999
%P 141-176
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a4/
%G en
%F SMJ2_1999_25_2_a4
Kerbashev, Tzvetozar. On the Maximum of a Branching Process Conditioned on the Total Progeny. Serdica Mathematical Journal, Tome 25 (1999) no. 2, pp. 141-176. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a4/