The Perturbed Generalized Tikhonov's Algorithm
Serdica Mathematical Journal, Tome 25 (1999) no. 2, pp. 91-102.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We work on the research of a zero of a maximal monotone operator on a real Hilbert space. Following the recent progress made in the context of the proximal point algorithm devoted to this problem, we introduce simultaneously a variable metric and a kind of relaxation in the perturbed Tikhonov’s algorithm studied by P. Tossings. So, we are led to work in the context of the variational convergence theory.
Keywords: Tikhonov’s Regularization, Perturbation, Variable Metric, Relaxation, Variational Convergence
@article{SMJ2_1999_25_2_a0,
     author = {Alexandre, P.},
     title = {The {Perturbed} {Generalized} {Tikhonov's} {Algorithm}},
     journal = {Serdica Mathematical Journal},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a0/}
}
TY  - JOUR
AU  - Alexandre, P.
TI  - The Perturbed Generalized Tikhonov's Algorithm
JO  - Serdica Mathematical Journal
PY  - 1999
SP  - 91
EP  - 102
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a0/
LA  - en
ID  - SMJ2_1999_25_2_a0
ER  - 
%0 Journal Article
%A Alexandre, P.
%T The Perturbed Generalized Tikhonov's Algorithm
%J Serdica Mathematical Journal
%D 1999
%P 91-102
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a0/
%G en
%F SMJ2_1999_25_2_a0
Alexandre, P. The Perturbed Generalized Tikhonov's Algorithm. Serdica Mathematical Journal, Tome 25 (1999) no. 2, pp. 91-102. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_2_a0/