Some Para-Hermitian Related Complex Structures and Non-existence of Semi-Riemannian Metric on Some Spheres
Serdica Mathematical Journal, Tome 25 (1999) no. 1, pp. 83-90.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

It is shown that the spheres S^(2n) (resp: S^k with k ≡ 1 mod 4) can be given neither an indefinite metric of any signature (resp: of signature (r, k − r) with 2 ≤ r ≤ k − 2) nor an almost paracomplex structure. Further for every given Riemannian metric on an almost para-Hermitian manifold with the associated 2-form φ one can construct an almost Hermitian structure (under certain conditions, two different almost Hermitian structures) whose associated 2-form(s) is φ.
Keywords: Hermitian, Para-Hermitian and Indefinite Metric
@article{SMJ2_1999_25_1_a7,
     author = {Erdem, Sadettin},
     title = {Some {Para-Hermitian} {Related} {Complex} {Structures} and {Non-existence} of {Semi-Riemannian} {Metric} on {Some} {Spheres}},
     journal = {Serdica Mathematical Journal},
     pages = {83--90},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a7/}
}
TY  - JOUR
AU  - Erdem, Sadettin
TI  - Some Para-Hermitian Related Complex Structures and Non-existence of Semi-Riemannian Metric on Some Spheres
JO  - Serdica Mathematical Journal
PY  - 1999
SP  - 83
EP  - 90
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a7/
LA  - en
ID  - SMJ2_1999_25_1_a7
ER  - 
%0 Journal Article
%A Erdem, Sadettin
%T Some Para-Hermitian Related Complex Structures and Non-existence of Semi-Riemannian Metric on Some Spheres
%J Serdica Mathematical Journal
%D 1999
%P 83-90
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a7/
%G en
%F SMJ2_1999_25_1_a7
Erdem, Sadettin. Some Para-Hermitian Related Complex Structures and Non-existence of Semi-Riemannian Metric on Some Spheres. Serdica Mathematical Journal, Tome 25 (1999) no. 1, pp. 83-90. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a7/