Nonlinear Wave Equation with Vanishing Potential
Serdica Mathematical Journal, Tome 25 (1999) no. 1, pp. 71-82.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We study the Cauchy problem for utt − ∆u + V (x)u^5 = 0 in 3–dimensional case. The function V (x) is positive and regular, in particular we are interested in the case V (x) = 0 in some points. We look for the global classical solution of this equation under a suitable hypothesis on the initial energy.
Keywords: Nonlinear Wave Equation, Large Data
@article{SMJ2_1999_25_1_a6,
     author = {Lucente, Sandra},
     title = {Nonlinear {Wave} {Equation} with {Vanishing} {Potential}},
     journal = {Serdica Mathematical Journal},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a6/}
}
TY  - JOUR
AU  - Lucente, Sandra
TI  - Nonlinear Wave Equation with Vanishing Potential
JO  - Serdica Mathematical Journal
PY  - 1999
SP  - 71
EP  - 82
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a6/
LA  - en
ID  - SMJ2_1999_25_1_a6
ER  - 
%0 Journal Article
%A Lucente, Sandra
%T Nonlinear Wave Equation with Vanishing Potential
%J Serdica Mathematical Journal
%D 1999
%P 71-82
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a6/
%G en
%F SMJ2_1999_25_1_a6
Lucente, Sandra. Nonlinear Wave Equation with Vanishing Potential. Serdica Mathematical Journal, Tome 25 (1999) no. 1, pp. 71-82. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a6/