The Point of Continuity Property: Descriptive Complexity and Ordinal Index
Serdica Mathematical Journal, Tome 24 (1998) no. 2, pp. 199-214.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let X be a separable Banach space without the Point of Continuity Property. When the set of closed subsets of its closed unit ball is equipped with the standard Effros-Borel structure, the set of those which have the Point of Continuity Property is non-Borel. We also prove that, for any separable Banach space X, the oscillation rank of the identity on X (an ordinal index which quantifies the Point of Continuity Property) is determined by the subspaces of X with a finite-dimensional decomposition. If X does not contain l1 , subspaces with basis suffice. If X ∗ is separable, one can even restrict to subspaces with shrinking basis.
Keywords: Point of Continuity Property, Borel Set, Ordinal Index
@article{SMJ2_1998_24_2_a6,
     author = {Bossard, Benoit and L\'opez, Gin\'es},
     title = {The {Point} of {Continuity} {Property:} {Descriptive} {Complexity} and {Ordinal} {Index}},
     journal = {Serdica Mathematical Journal},
     pages = {199--214},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1998_24_2_a6/}
}
TY  - JOUR
AU  - Bossard, Benoit
AU  - López, Ginés
TI  - The Point of Continuity Property: Descriptive Complexity and Ordinal Index
JO  - Serdica Mathematical Journal
PY  - 1998
SP  - 199
EP  - 214
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1998_24_2_a6/
LA  - en
ID  - SMJ2_1998_24_2_a6
ER  - 
%0 Journal Article
%A Bossard, Benoit
%A López, Ginés
%T The Point of Continuity Property: Descriptive Complexity and Ordinal Index
%J Serdica Mathematical Journal
%D 1998
%P 199-214
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1998_24_2_a6/
%G en
%F SMJ2_1998_24_2_a6
Bossard, Benoit; López, Ginés. The Point of Continuity Property: Descriptive Complexity and Ordinal Index. Serdica Mathematical Journal, Tome 24 (1998) no. 2, pp. 199-214. http://geodesic.mathdoc.fr/item/SMJ2_1998_24_2_a6/