Fragmentability of the Dual of a Banach Space with Smooth Bump
Serdica Mathematical Journal, Tome 24 (1998) no. 2, pp. 187-198
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We prove that if a Banach space X admits a Lipschitz β-smooth
bump function, then (X ∗ , weak ∗ ) is fragmented by a metric, generating a
topology, which is stronger than the τβ -topology. We also use this to prove
that if X ∗ admits a Lipschitz Gateaux-smooth bump function, then X is
sigma-fragmentable.
Keywords:
Smooth Bump, Fragmentability, Sigma-Fragmentability
@article{SMJ2_1998_24_2_a5,
author = {Kortezov, I.},
title = {Fragmentability of the {Dual} of a {Banach} {Space} with {Smooth} {Bump}},
journal = {Serdica Mathematical Journal},
pages = {187--198},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1998_24_2_a5/}
}
Kortezov, I. Fragmentability of the Dual of a Banach Space with Smooth Bump. Serdica Mathematical Journal, Tome 24 (1998) no. 2, pp. 187-198. http://geodesic.mathdoc.fr/item/SMJ2_1998_24_2_a5/