Fragmentability of the Dual of a Banach Space with Smooth Bump
Serdica Mathematical Journal, Tome 24 (1998) no. 2, pp. 187-198.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We prove that if a Banach space X admits a Lipschitz β-smooth bump function, then (X ∗ , weak ∗ ) is fragmented by a metric, generating a topology, which is stronger than the τβ -topology. We also use this to prove that if X ∗ admits a Lipschitz Gateaux-smooth bump function, then X is sigma-fragmentable.
Keywords: Smooth Bump, Fragmentability, Sigma-Fragmentability
@article{SMJ2_1998_24_2_a5,
     author = {Kortezov, I.},
     title = {Fragmentability of the {Dual} of a {Banach} {Space} with {Smooth} {Bump}},
     journal = {Serdica Mathematical Journal},
     pages = {187--198},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1998_24_2_a5/}
}
TY  - JOUR
AU  - Kortezov, I.
TI  - Fragmentability of the Dual of a Banach Space with Smooth Bump
JO  - Serdica Mathematical Journal
PY  - 1998
SP  - 187
EP  - 198
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1998_24_2_a5/
LA  - en
ID  - SMJ2_1998_24_2_a5
ER  - 
%0 Journal Article
%A Kortezov, I.
%T Fragmentability of the Dual of a Banach Space with Smooth Bump
%J Serdica Mathematical Journal
%D 1998
%P 187-198
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1998_24_2_a5/
%G en
%F SMJ2_1998_24_2_a5
Kortezov, I. Fragmentability of the Dual of a Banach Space with Smooth Bump. Serdica Mathematical Journal, Tome 24 (1998) no. 2, pp. 187-198. http://geodesic.mathdoc.fr/item/SMJ2_1998_24_2_a5/