Decomposition of Banach Space into a Direct Sum of Separable and Reflexive Subspaces and Borel Maps
Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 335-350
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The main results of the paper are:
Theorem 1. Let a Banach space E be decomposed into a direct sum of
separable and reflexive subspaces. Then for every Hausdorff locally convex
topological vector space Z and for every linear continuous bijective operator
T : E → Z, the inverse T^(−1) is a Borel map.
Theorem 2. Let us assume the continuum hypothesis. If a Banach space E
cannot be decomposed into a direct sum of separable and reflexive subspaces,
then there exists a normed space Z and a linear continuous bijective operator
T : E → Z such that T^(−1) is not a Borel map.
Keywords:
Banach Space, Borel Map
@article{SMJ2_1997_23_3-4_a9,
author = {Plichko, Anatolij},
title = {Decomposition of {Banach} {Space} into a {Direct} {Sum} of {Separable} and {Reflexive} {Subspaces} and {Borel} {Maps}},
journal = {Serdica Mathematical Journal},
pages = {335--350},
publisher = {mathdoc},
volume = {23},
number = {3-4},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a9/}
}
TY - JOUR AU - Plichko, Anatolij TI - Decomposition of Banach Space into a Direct Sum of Separable and Reflexive Subspaces and Borel Maps JO - Serdica Mathematical Journal PY - 1997 SP - 335 EP - 350 VL - 23 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a9/ LA - en ID - SMJ2_1997_23_3-4_a9 ER -
%0 Journal Article %A Plichko, Anatolij %T Decomposition of Banach Space into a Direct Sum of Separable and Reflexive Subspaces and Borel Maps %J Serdica Mathematical Journal %D 1997 %P 335-350 %V 23 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a9/ %G en %F SMJ2_1997_23_3-4_a9
Plichko, Anatolij. Decomposition of Banach Space into a Direct Sum of Separable and Reflexive Subspaces and Borel Maps. Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 335-350. http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a9/