Decomposition of Banach Space into a Direct Sum of Separable and Reflexive Subspaces and Borel Maps
Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 335-350.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The main results of the paper are: Theorem 1. Let a Banach space E be decomposed into a direct sum of separable and reflexive subspaces. Then for every Hausdorff locally convex topological vector space Z and for every linear continuous bijective operator T : E → Z, the inverse T^(−1) is a Borel map. Theorem 2. Let us assume the continuum hypothesis. If a Banach space E cannot be decomposed into a direct sum of separable and reflexive subspaces, then there exists a normed space Z and a linear continuous bijective operator T : E → Z such that T^(−1) is not a Borel map.
Keywords: Banach Space, Borel Map
@article{SMJ2_1997_23_3-4_a9,
     author = {Plichko, Anatolij},
     title = {Decomposition of {Banach} {Space} into a {Direct} {Sum} of {Separable} and {Reflexive} {Subspaces} and {Borel} {Maps}},
     journal = {Serdica Mathematical Journal},
     pages = {335--350},
     publisher = {mathdoc},
     volume = {23},
     number = {3-4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a9/}
}
TY  - JOUR
AU  - Plichko, Anatolij
TI  - Decomposition of Banach Space into a Direct Sum of Separable and Reflexive Subspaces and Borel Maps
JO  - Serdica Mathematical Journal
PY  - 1997
SP  - 335
EP  - 350
VL  - 23
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a9/
LA  - en
ID  - SMJ2_1997_23_3-4_a9
ER  - 
%0 Journal Article
%A Plichko, Anatolij
%T Decomposition of Banach Space into a Direct Sum of Separable and Reflexive Subspaces and Borel Maps
%J Serdica Mathematical Journal
%D 1997
%P 335-350
%V 23
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a9/
%G en
%F SMJ2_1997_23_3-4_a9
Plichko, Anatolij. Decomposition of Banach Space into a Direct Sum of Separable and Reflexive Subspaces and Borel Maps. Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 335-350. http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a9/