On the Structure of Spatial Branching Processes
Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 269-312
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The paper is a contribution to the theory of branching processes
with discrete time and a general phase space in the sense of [2]. We
characterize the class of regular, i.e. in a sense sufficiently random, branching
processes (Φk) k∈Z by almost sure properties of their realizations without
making any assumptions about stationarity or existence of moments.
This enables us to classify the clans of (Φk) into the regular part and the
completely non-regular part. It turns out that the completely non-regular
branching processes are built up from single-line processes, whereas the
regular ones are mixtures of left-tail trivial processes with a Poisson family
structure.
Keywords:
Branching Particle Systems, Two-Sided Infinite Markov Sequences of a Random Populations, Genealogy, Poisson Distribution
@article{SMJ2_1997_23_3-4_a7,
author = {Matthes, Klaus and Nawrotzki, Kurt and Siegmund-Schultze, Rainer},
title = {On the {Structure} of {Spatial} {Branching} {Processes}},
journal = {Serdica Mathematical Journal},
pages = {269--312},
year = {1997},
volume = {23},
number = {3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a7/}
}
TY - JOUR AU - Matthes, Klaus AU - Nawrotzki, Kurt AU - Siegmund-Schultze, Rainer TI - On the Structure of Spatial Branching Processes JO - Serdica Mathematical Journal PY - 1997 SP - 269 EP - 312 VL - 23 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a7/ LA - en ID - SMJ2_1997_23_3-4_a7 ER -
Matthes, Klaus; Nawrotzki, Kurt; Siegmund-Schultze, Rainer. On the Structure of Spatial Branching Processes. Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 269-312. http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a7/