On Typical Compact Convex Sets in Hilbert Spaces
Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 255-268
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Let E be an infinite dimensional separable space and for e ∈ E
and X a nonempty compact convex subset of E, let qX(e) be the metric
antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown
that for a typical (in the sence of the Baire category) compact convex set
X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every
e in a dense subset of E.
Keywords:
Compact Convex Set, Metric Antiprojection, Multivalued Locus, Baire Category
@article{SMJ2_1997_23_3-4_a6,
author = {De Blasi, F.},
title = {On {Typical} {Compact} {Convex} {Sets} in {Hilbert} {Spaces}},
journal = {Serdica Mathematical Journal},
pages = {255--268},
publisher = {mathdoc},
volume = {23},
number = {3-4},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a6/}
}
De Blasi, F. On Typical Compact Convex Sets in Hilbert Spaces. Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 255-268. http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a6/