Coincidence of Vietoris and Wijsman Topologies: A New Proof
Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 363-366
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Let (X, d) be a metric space and CL(X) the family of all
nonempty closed subsets of X. We provide a new proof of the fact that the
coincidence of the Vietoris and Wijsman topologies induced by the metric
d forces X to be a compact space. In the literature only a more involved
and indirect proof using the proximal topology is known. Here we do not
need this intermediate step. Moreover we prove that (X, d) is boundedly
compact if and only if the bounded Vietoris and Wijsman topologies on
CL(X) coincide.
Keywords:
Vietoris Topology, Wijsman Topology, Metric Space, Compact Space
@article{SMJ2_1997_23_3-4_a11,
author = {Hol\'a, L{\textquoteright}.},
title = {Coincidence of {Vietoris} and {Wijsman} {Topologies:} {A} {New} {Proof}},
journal = {Serdica Mathematical Journal},
pages = {363--366},
year = {1997},
volume = {23},
number = {3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a11/}
}
Holá, L’. Coincidence of Vietoris and Wijsman Topologies: A New Proof. Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 363-366. http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a11/