Uniform Eberlein Compacta and Uniformly Gâteaux Smooth Norms
Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 351-362
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
It is shown that the dual unit ball BX∗ of a Banach space X∗
in its weak star topology is a uniform Eberlein compact if and only if X
admits a uniformly Gâteaux smooth norm and X is a subspace of a weakly
compactly generated space. The bidual unit ball BX∗∗ of a Banach space
X∗∗ in its weak star topology is a uniform Eberlein compact if and only if
X admits a weakly uniformly rotund norm. In this case X admits a locally
uniformly rotund and Fréchet differentiable norm. An Eberlein compact
K is a uniform Eberlein compact if and only if C(K) admits a uniformly
Gˆateaux differentiable norm.
Keywords:
Uniform Eberlein Compacta, Uniform Gâteaux Smooth Norms, Weak Compact Generating
@article{SMJ2_1997_23_3-4_a10,
author = {Fabian, Mari\'an and H\'ajek, Petr and Zizler, V\'aclav},
title = {Uniform {Eberlein} {Compacta} and {Uniformly} {G\^ateaux} {Smooth} {Norms}},
journal = {Serdica Mathematical Journal},
pages = {351--362},
publisher = {mathdoc},
volume = {23},
number = {3-4},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a10/}
}
TY - JOUR AU - Fabian, Marián AU - Hájek, Petr AU - Zizler, Václav TI - Uniform Eberlein Compacta and Uniformly Gâteaux Smooth Norms JO - Serdica Mathematical Journal PY - 1997 SP - 351 EP - 362 VL - 23 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a10/ LA - en ID - SMJ2_1997_23_3-4_a10 ER -
Fabian, Marián; Hájek, Petr; Zizler, Václav. Uniform Eberlein Compacta and Uniformly Gâteaux Smooth Norms. Serdica Mathematical Journal, Tome 23 (1997) no. 3-4, pp. 351-362. http://geodesic.mathdoc.fr/item/SMJ2_1997_23_3-4_a10/