Highest Weight Modules of W1+∞, Darboux Transformations and the Bispectral Problem
Serdica Mathematical Journal, Tome 23 (1997) no. 2, pp. 95-112
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
This paper is a survey of our recent results on the bispectral
problem. We describe a new method for constructing bispectral algebras
of any rank and illustrate the method by a series of new examples as well
as by all previously known ones. Next we exhibit a close connection of
the bispectral problem to the representation theory of W1+∞–algerba. This
connection allows us to explain and generalise to any rank the result of Magri
and Zubelli on the symmetries of the manifold of the bispectral operators of
rank and order two.
Keywords:
Bispectral Operators, Darboux Transformations, W–Algebras, Highest Weight Representations, KP–Hierarchy
@article{SMJ2_1997_23_2_a1,
author = {Bakalov, B. and Horozov, E. and Yakimov, M.},
title = {Highest {Weight} {Modules} of {W1+\ensuremath{\infty},} {Darboux} {Transformations} and the {Bispectral} {Problem}},
journal = {Serdica Mathematical Journal},
pages = {95--112},
year = {1997},
volume = {23},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1997_23_2_a1/}
}
TY - JOUR AU - Bakalov, B. AU - Horozov, E. AU - Yakimov, M. TI - Highest Weight Modules of W1+∞, Darboux Transformations and the Bispectral Problem JO - Serdica Mathematical Journal PY - 1997 SP - 95 EP - 112 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/SMJ2_1997_23_2_a1/ LA - en ID - SMJ2_1997_23_2_a1 ER -
Bakalov, B.; Horozov, E.; Yakimov, M. Highest Weight Modules of W1+∞, Darboux Transformations and the Bispectral Problem. Serdica Mathematical Journal, Tome 23 (1997) no. 2, pp. 95-112. http://geodesic.mathdoc.fr/item/SMJ2_1997_23_2_a1/