On the Difference of 4-Gonal Linear Systems on some Curves
Serdica Mathematical Journal, Tome 23 (1997) no. 1, pp. 59-68.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let C = (C, g^1/4 ) be a tetragonal curve. We consider the scrollar invariants e1 , e2 , e3 of g^1/4 . We prove that if W^1/4 (C) is a non-singular variety, then every g^1/4 ∈ W^1/4 (C) has the same scrollar invariants.
Keywords: Curve Theory, Algebraic Geometry
@article{SMJ2_1997_23_1_a4,
     author = {Ohbuchi, Akira},
     title = {On the {Difference} of {4-Gonal} {Linear} {Systems} on some {Curves}},
     journal = {Serdica Mathematical Journal},
     pages = {59--68},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1997_23_1_a4/}
}
TY  - JOUR
AU  - Ohbuchi, Akira
TI  - On the Difference of 4-Gonal Linear Systems on some Curves
JO  - Serdica Mathematical Journal
PY  - 1997
SP  - 59
EP  - 68
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1997_23_1_a4/
LA  - en
ID  - SMJ2_1997_23_1_a4
ER  - 
%0 Journal Article
%A Ohbuchi, Akira
%T On the Difference of 4-Gonal Linear Systems on some Curves
%J Serdica Mathematical Journal
%D 1997
%P 59-68
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1997_23_1_a4/
%G en
%F SMJ2_1997_23_1_a4
Ohbuchi, Akira. On the Difference of 4-Gonal Linear Systems on some Curves. Serdica Mathematical Journal, Tome 23 (1997) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/SMJ2_1997_23_1_a4/