On the Difference of 4-Gonal Linear Systems on some Curves
Serdica Mathematical Journal, Tome 23 (1997) no. 1, pp. 59-68
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Let C = (C, g^1/4 ) be a tetragonal curve. We consider the scrollar
invariants e1 , e2 , e3 of g^1/4 . We prove that if W^1/4 (C) is a non-singular variety,
then every g^1/4 ∈ W^1/4 (C) has the same scrollar invariants.
Keywords:
Curve Theory, Algebraic Geometry
@article{SMJ2_1997_23_1_a4,
author = {Ohbuchi, Akira},
title = {On the {Difference} of {4-Gonal} {Linear} {Systems} on some {Curves}},
journal = {Serdica Mathematical Journal},
pages = {59--68},
year = {1997},
volume = {23},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1997_23_1_a4/}
}
Ohbuchi, Akira. On the Difference of 4-Gonal Linear Systems on some Curves. Serdica Mathematical Journal, Tome 23 (1997) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/SMJ2_1997_23_1_a4/