Weakly Increasing Zero-Diminishing Sequences
Serdica Mathematical Journal, Tome 22 (1996) no. 4, pp. 547-570
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The following problem, suggested by Laguerre’s Theorem (1884),
remains open: Characterize all real sequences {μk} k=0...∞
which have the zero-diminishing property; that is, if k=0...n, p(x) = ∑(ak x^k) is any P real polynomial, then
k=0...n, p(x) = ∑(μk ak x^k) has no more real zeros than p(x).
In this paper this problem is solved under the additional assumption of a weak
growth condition on the sequence {μk} k=0...∞, namely lim n→∞ | μn |^(1/n) ∞.
More precisely, it is established that the real sequence {μk} k≥0 is a weakly increasing zerodiminishing
sequence if and only if there exists σ ∈ {+1,−1} and an entire function
n≥1, Φ(z)= be^(az) ∏(1+ x/αn), a, b ∈ R^1, b =0, αn > 0 ∀n ≥ 1, ∑(1/αn) ∞, such that µk = (σ^k)/Φ(k), ∀k ≥ 0.
Keywords:
Weakly Increasing Sequences, Zero-Diminishing Sequences, Zeros of Entire Functions, Interpolation
@article{SMJ2_1996_22_4_a4,
author = {Bakan, Andrew and Craven, Thomas and Csordas, George and Golub, Anatoly},
title = {Weakly {Increasing} {Zero-Diminishing} {Sequences}},
journal = {Serdica Mathematical Journal},
pages = {547--570},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1996_22_4_a4/}
}
TY - JOUR AU - Bakan, Andrew AU - Craven, Thomas AU - Csordas, George AU - Golub, Anatoly TI - Weakly Increasing Zero-Diminishing Sequences JO - Serdica Mathematical Journal PY - 1996 SP - 547 EP - 570 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_1996_22_4_a4/ LA - en ID - SMJ2_1996_22_4_a4 ER -
Bakan, Andrew; Craven, Thomas; Csordas, George; Golub, Anatoly. Weakly Increasing Zero-Diminishing Sequences. Serdica Mathematical Journal, Tome 22 (1996) no. 4, pp. 547-570. http://geodesic.mathdoc.fr/item/SMJ2_1996_22_4_a4/