Stability of the Iteration Method for non Expansive Mappings
Serdica Mathematical Journal, Tome 22 (1996) no. 3, pp. 331-340.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The general iteration method for nonexpansive mappings on a Banach space is considered. Under some assumption of fast enough convergence on the sequence of (“almost” nonexpansive) perturbed iteration mappings, if the basic method is τ−convergent for a suitable topology τ weaker than the norm topology, then the perturbed method is also τ−convergent. Application is presented to the gradient-prox method for monotone inclusions in Hilbert spaces.
Keywords: Convex Minimization, Convergence, Iteration Method, Gradient Method, Monotone Inclusions, Prox Method, Stability
@article{SMJ2_1996_22_3_a3,
     author = {Lemaire, B.},
     title = {Stability of the {Iteration} {Method} for non {Expansive} {Mappings}},
     journal = {Serdica Mathematical Journal},
     pages = {331--340},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1996_22_3_a3/}
}
TY  - JOUR
AU  - Lemaire, B.
TI  - Stability of the Iteration Method for non Expansive Mappings
JO  - Serdica Mathematical Journal
PY  - 1996
SP  - 331
EP  - 340
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1996_22_3_a3/
LA  - en
ID  - SMJ2_1996_22_3_a3
ER  - 
%0 Journal Article
%A Lemaire, B.
%T Stability of the Iteration Method for non Expansive Mappings
%J Serdica Mathematical Journal
%D 1996
%P 331-340
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1996_22_3_a3/
%G en
%F SMJ2_1996_22_3_a3
Lemaire, B. Stability of the Iteration Method for non Expansive Mappings. Serdica Mathematical Journal, Tome 22 (1996) no. 3, pp. 331-340. http://geodesic.mathdoc.fr/item/SMJ2_1996_22_3_a3/