Somme Ponctuelle D'operateurs Maximaux Monotones
Serdica Mathematical Journal, Tome 22 (1996) no. 3, pp. 267-292
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The primary goal of this paper is to shed some light on the maximality
of the pointwise sum of two maximal monotone operators. The interesting purpose
is to extend some recent results of Attouch, Moudafi and Riahi on the graph-convergence
of maximal monotone operators to the more general setting of reflexive
Banach spaces. In addition, we present some conditions which imply the uniform
Brézis-Crandall-Pazy condition. Afterwards, we present, as a consequence, some
recent conditions which ensure the Mosco-epiconvergence of the sum of convex
proper lower semicontinuous functions.
Mots-clés :
Opérateur Maximal Monotone, Convergence Au Sens Des Graphes, Convergence Au Sens De Mosco, Condition De Brézis-crandall and Pazy
@article{SMJ2_1996_22_3_a0,
author = {Attouch, H. and Riahi, H. and Th\'era, M.},
title = {Somme {Ponctuelle} {D'operateurs} {Maximaux} {Monotones}},
journal = {Serdica Mathematical Journal},
pages = {267--292},
year = {1996},
volume = {22},
number = {3},
language = {fr},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1996_22_3_a0/}
}
Attouch, H.; Riahi, H.; Théra, M. Somme Ponctuelle D'operateurs Maximaux Monotones. Serdica Mathematical Journal, Tome 22 (1996) no. 3, pp. 267-292. http://geodesic.mathdoc.fr/item/SMJ2_1996_22_3_a0/