Application of Lyapunov's Direct Method to the Existence of Integral Manifolds of Impulsive Differential Equations
Serdica Mathematical Journal, Tome 22 (1996) no. 2, pp. 83-90
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The present paper investigates the existence of integral manifolds for
impulsive differential equations with variable perturbations.
By means of piecewise continuous functions which are generalizations of the
classical Lyapunov’s functions, sufficient conditions for the existence of integral
manifolds of such equations are found.
Keywords:
Integral Manifold, Impulsive Differential Equations
@article{SMJ2_1996_22_2_a1,
author = {Stamov, G.},
title = {Application of {Lyapunov's} {Direct} {Method} to the {Existence} of {Integral} {Manifolds} of {Impulsive} {Differential} {Equations}},
journal = {Serdica Mathematical Journal},
pages = {83--90},
year = {1996},
volume = {22},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a1/}
}
TY - JOUR AU - Stamov, G. TI - Application of Lyapunov's Direct Method to the Existence of Integral Manifolds of Impulsive Differential Equations JO - Serdica Mathematical Journal PY - 1996 SP - 83 EP - 90 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a1/ LA - en ID - SMJ2_1996_22_2_a1 ER -
Stamov, G. Application of Lyapunov's Direct Method to the Existence of Integral Manifolds of Impulsive Differential Equations. Serdica Mathematical Journal, Tome 22 (1996) no. 2, pp. 83-90. http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a1/