Application of Lyapunov's Direct Method to the Existence of Integral Manifolds of Impulsive Differential Equations
Serdica Mathematical Journal, Tome 22 (1996) no. 2, pp. 83-90.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The present paper investigates the existence of integral manifolds for impulsive differential equations with variable perturbations. By means of piecewise continuous functions which are generalizations of the classical Lyapunov’s functions, sufficient conditions for the existence of integral manifolds of such equations are found.
Keywords: Integral Manifold, Impulsive Differential Equations
@article{SMJ2_1996_22_2_a1,
     author = {Stamov, G.},
     title = {Application of {Lyapunov's} {Direct} {Method} to the {Existence} of {Integral} {Manifolds} of {Impulsive} {Differential} {Equations}},
     journal = {Serdica Mathematical Journal},
     pages = {83--90},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a1/}
}
TY  - JOUR
AU  - Stamov, G.
TI  - Application of Lyapunov's Direct Method to the Existence of Integral Manifolds of Impulsive Differential Equations
JO  - Serdica Mathematical Journal
PY  - 1996
SP  - 83
EP  - 90
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a1/
LA  - en
ID  - SMJ2_1996_22_2_a1
ER  - 
%0 Journal Article
%A Stamov, G.
%T Application of Lyapunov's Direct Method to the Existence of Integral Manifolds of Impulsive Differential Equations
%J Serdica Mathematical Journal
%D 1996
%P 83-90
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a1/
%G en
%F SMJ2_1996_22_2_a1
Stamov, G. Application of Lyapunov's Direct Method to the Existence of Integral Manifolds of Impulsive Differential Equations. Serdica Mathematical Journal, Tome 22 (1996) no. 2, pp. 83-90. http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a1/