On a Two-Dimensional Search Problem
Serdica Mathematical Journal, Tome 21 (1995) no. 3, pp. 219-230 Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library

Voir la notice de l'article

In this article we explore the so-called two-dimensional tree− search problem. We prove that for integers m of the form m = (2^(st) − 1)/(2^s − 1) the rectangles A(m, n) are all tight, no matter what n is. On the other hand, we prove that there exist infinitely many integers m for which there is an infinite number of n’s such that A(m, n) is loose. Furthermore, we determine the smallest loose rectangle as well as the smallest loose square (A(181, 181)). It is still undecided whether there exist infinitely many loose squares.
Keywords: Two-Dimensional Search Problem
@article{SMJ2_1995_21_3_a3,
     author = {Kolev, Emil and Landgev, Ivan},
     title = {On a {Two-Dimensional} {Search} {Problem}},
     journal = {Serdica Mathematical Journal},
     pages = {219--230},
     year = {1995},
     volume = {21},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1995_21_3_a3/}
}
TY  - JOUR
AU  - Kolev, Emil
AU  - Landgev, Ivan
TI  - On a Two-Dimensional Search Problem
JO  - Serdica Mathematical Journal
PY  - 1995
SP  - 219
EP  - 230
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1995_21_3_a3/
LA  - en
ID  - SMJ2_1995_21_3_a3
ER  - 
%0 Journal Article
%A Kolev, Emil
%A Landgev, Ivan
%T On a Two-Dimensional Search Problem
%J Serdica Mathematical Journal
%D 1995
%P 219-230
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/SMJ2_1995_21_3_a3/
%G en
%F SMJ2_1995_21_3_a3
Kolev, Emil; Landgev, Ivan. On a Two-Dimensional Search Problem. Serdica Mathematical Journal, Tome 21 (1995) no. 3, pp. 219-230. http://geodesic.mathdoc.fr/item/SMJ2_1995_21_3_a3/