On an Extremal Problem concerning Bernstein Operators
Serdica Mathematical Journal, Tome 21 (1995) no. 2, pp. 137-150
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The best constant problem for Bernstein operators with respect to
the second modulus of smoothness is considered. We show that for any
1/2 ≤ a 1, there is an N(a) ∈ N such that for n ≥ N(a),
1−a≤k, n≤a, sup | Bn (f, k/n) − f(k/n) | ≤ cω2(f, 1/√n),
where c is a constant,0 c 1.
Keywords:
Bernstein Operators, Best Constant, Second Modulus of Smoothness, K-Functional
@article{SMJ2_1995_21_2_a3,
author = {Gonska, Heinz and Zhou, Ding-Xuan},
title = {On an {Extremal} {Problem} concerning {Bernstein} {Operators}},
journal = {Serdica Mathematical Journal},
pages = {137--150},
year = {1995},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1995_21_2_a3/}
}
Gonska, Heinz; Zhou, Ding-Xuan. On an Extremal Problem concerning Bernstein Operators. Serdica Mathematical Journal, Tome 21 (1995) no. 2, pp. 137-150. http://geodesic.mathdoc.fr/item/SMJ2_1995_21_2_a3/