On Uniformly Convex and Uniformly Kadec-Klee Renomings
Serdica Mathematical Journal, Tome 21 (1995) no. 1, pp. 1-18
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We give a new construction of uniformly convex norms with a power
type modulus on super-reflexive spaces based on the notion of dentability index.
Furthermore, we prove that if the Szlenk index of a Banach space is less than
or equal to ω (first infinite ordinal) then there is an equivalent weak* lower
semicontinuous positively homogeneous functional on X* satisfying the uniform Kadec-Klee
Property for the weak*-topology (UKK*). Then we solve the UKK or UKK*
renorming problems for Lp(X) spaces and C(K) spaces for K scattered compact
space.
Keywords:
Renorming, Szlenk Index, Dentability, Uniformly Convex, Kadec-Klee, Super-Reflexive, Scattered Compact, Lp Spaces
@article{SMJ2_1995_21_1_a0,
author = {Lancien, Gilles},
title = {On {Uniformly} {Convex} and {Uniformly} {Kadec-Klee} {Renomings}},
journal = {Serdica Mathematical Journal},
pages = {1--18},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_1995_21_1_a0/}
}
Lancien, Gilles. On Uniformly Convex and Uniformly Kadec-Klee Renomings. Serdica Mathematical Journal, Tome 21 (1995) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/SMJ2_1995_21_1_a0/