A Noncommutative Weight-Dependent Generalization of the Binomial Theorem
Séminaire lotharingien de combinatoire, Tome 81 (2020)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

A weight-dependent generalization of the binomial theorem for noncommuting variables is presented. This result extends the well-known binomial theorem for q-commuting variables by a generic weight function depending on two integers. For two special cases of the weight function, in both cases restricting it to depend only on a single integer, the noncommutative binomial theorem involves an expansion involving complete symmetric functions, and elementary symmetric functions, respectively. Another special case concerns the weight function to be a suitably chosen elliptic (i.e., doubly-periodic meromorphic) function, in which case an elliptic generalization of the binomial theorem is obtained. The latter is utilized to quickly recover Frenkel and Turaev's elliptic hypergeometric 10V9 summation formula, an identity fundamental to the theory of elliptic hypergeometric series. Further specializations yield noncommutative binomial theorems of basic hypergeometric type.

@article{SLC_2020_81_a9,
     author = {Michael J. Schlosser},
     title = {A {Noncommutative} {Weight-Dependent} {Generalization} of the {Binomial} {Theorem}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {81},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a9/}
}
TY  - JOUR
AU  - Michael J. Schlosser
TI  - A Noncommutative Weight-Dependent Generalization of the Binomial Theorem
JO  - Séminaire lotharingien de combinatoire
PY  - 2020
VL  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2020_81_a9/
ID  - SLC_2020_81_a9
ER  - 
%0 Journal Article
%A Michael J. Schlosser
%T A Noncommutative Weight-Dependent Generalization of the Binomial Theorem
%J Séminaire lotharingien de combinatoire
%D 2020
%V 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2020_81_a9/
%F SLC_2020_81_a9
Michael J. Schlosser. A Noncommutative Weight-Dependent Generalization of the Binomial Theorem. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a9/