Interlaced Rectangular Parking Functions
Séminaire lotharingien de combinatoire, Tome 81 (2020)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
The aim of this work is to extend the Grossman-Bizley [Scripta Math. 16 (1950), 207-212; J. Inst. Actuar. 80 (1954), 55-62] paradigm that allows the enumeration of Dyck paths in an m x n-rectangle to a general Sm x Sn-module context. We obtain an explicit formula for the the "bi-Frobenius" characteristic of what we call interlaced rectangular parking functions in an m x n-rectangle. These are obtained by labeling the n vertical steps of an m x n-Dyck path by the numbers from 1 to n, together with an independent labeling of its horizontal steps by integers from 1 to m. Our formula specializes to give the Frobenius characteristic of the Sn-module of m x n-parking functions in the general situation. Hence, it subsumes the result of Armstrong, Loehr and Warrington of [Ann. Combin. 20 (2016), 21-58], which furnishes such a formula for the special case where m and n are coprime integers.
@article{SLC_2020_81_a7,
author = {Jean-Christophe Aval and Fran\c{c}ois Bergeron},
title = {Interlaced {Rectangular} {Parking} {Functions}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {81},
year = {2020},
url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a7/}
}
Jean-Christophe Aval; François Bergeron. Interlaced Rectangular Parking Functions. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a7/