Determinantal Elliptic Selberg Integrals
Séminaire lotharingien de combinatoire, Tome 81 (2020)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The classical Selberg integral contains a power of the Vandermonde determinant. When that power is chosen to be a square, it is easy to prove Selberg's identity by interpreting it as a determinant of one-variable integrals. We give similar proofs of summation and transformation formulas for continuous and discrete elliptic Selberg integrals. In the continuous case, the same proof was given previously by Noumi. Special cases of the resulting identities have found applications in combinatorics.

@article{SLC_2020_81_a6,
     author = {Hjalmar Rosengren},
     title = {Determinantal {Elliptic} {Selberg} {Integrals}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {81},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a6/}
}
TY  - JOUR
AU  - Hjalmar Rosengren
TI  - Determinantal Elliptic Selberg Integrals
JO  - Séminaire lotharingien de combinatoire
PY  - 2020
VL  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2020_81_a6/
ID  - SLC_2020_81_a6
ER  - 
%0 Journal Article
%A Hjalmar Rosengren
%T Determinantal Elliptic Selberg Integrals
%J Séminaire lotharingien de combinatoire
%D 2020
%V 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2020_81_a6/
%F SLC_2020_81_a6
Hjalmar Rosengren. Determinantal Elliptic Selberg Integrals. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a6/