Combinatorics of (q,y)-Laguerre Polynomials and Their Moments
Séminaire lotharingien de combinatoire, Tome 81 (2020)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We consider a (q,y)-analogue of Laguerre polynomials L(α)n(x;y|q) for integral α >= -1, which turns out to be a rescaled version of Al-Salam-Chihara polynomials. A combinatorial interpretation for the (q,y)-Laguerre polynomials is given using a colored version of Foata and Strehl's Laguerre configurations with suitable statistics. When α >= 0, the corresponding moments are described using certain classical statistics on permutations, and the linearization coefficients are proved to be a polynomial in y and q with nonnegative integral coefficients.
@article{SLC_2020_81_a4,
author = {Qiongqiong Pan and Jiang Zeng},
title = {Combinatorics of {(q,y)-Laguerre} {Polynomials} and {Their} {Moments}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2020},
volume = {81},
url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a4/}
}
Qiongqiong Pan; Jiang Zeng. Combinatorics of (q,y)-Laguerre Polynomials and Their Moments. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a4/