Combinatorics of (q,y)-Laguerre Polynomials and Their Moments
Séminaire lotharingien de combinatoire, Tome 81 (2020) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We consider a (q,y)-analogue of Laguerre polynomials L(α)n(x;y|q) for integral α >= -1, which turns out to be a rescaled version of Al-Salam-Chihara polynomials. A combinatorial interpretation for the (q,y)-Laguerre polynomials is given using a colored version of Foata and Strehl's Laguerre configurations with suitable statistics. When α >= 0, the corresponding moments are described using certain classical statistics on permutations, and the linearization coefficients are proved to be a polynomial in y and q with nonnegative integral coefficients.

@article{SLC_2020_81_a4,
     author = {Qiongqiong Pan and Jiang Zeng},
     title = {Combinatorics of {(q,y)-Laguerre} {Polynomials} and {Their} {Moments}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2020},
     volume = {81},
     url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a4/}
}
TY  - JOUR
AU  - Qiongqiong Pan
AU  - Jiang Zeng
TI  - Combinatorics of (q,y)-Laguerre Polynomials and Their Moments
JO  - Séminaire lotharingien de combinatoire
PY  - 2020
VL  - 81
UR  - http://geodesic.mathdoc.fr/item/SLC_2020_81_a4/
ID  - SLC_2020_81_a4
ER  - 
%0 Journal Article
%A Qiongqiong Pan
%A Jiang Zeng
%T Combinatorics of (q,y)-Laguerre Polynomials and Their Moments
%J Séminaire lotharingien de combinatoire
%D 2020
%V 81
%U http://geodesic.mathdoc.fr/item/SLC_2020_81_a4/
%F SLC_2020_81_a4
Qiongqiong Pan; Jiang Zeng. Combinatorics of (q,y)-Laguerre Polynomials and Their Moments. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a4/