k-Indivisible Noncrossing Partitions
Séminaire lotharingien de combinatoire, Tome 81 (2020)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
For a fixed integer k, we consider the set of noncrossing partitions, where both the block sizes and the difference between adjacent elements in a block is 1 (mod k). We show that these k-indivisible noncrossing partitions can be recovered in the setting of subgroups of the symmetric group generated by (k+1)-cycles, and that the poset of k-indivisible noncrossing partitions under refinement order has many beautiful enumerative and structural properties. We encounter k-parking functions and some special Cambrian lattices on the way, and show that a special class of lattice paths constitutes a nonnesting analogue.
@article{SLC_2020_81_a3,
author = {Henri M\"uhle and Philippe Nadeau and Nathan Williams},
title = {k-Indivisible {Noncrossing} {Partitions}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {81},
year = {2020},
url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a3/}
}
Henri Mühle; Philippe Nadeau; Nathan Williams. k-Indivisible Noncrossing Partitions. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a3/