Modular Nekrasov-Okounkov Formulas
Séminaire lotharingien de combinatoire, Tome 81 (2020)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Using Littlewood's map, which decomposes a partition into its r-core and r-quotient, Han and Ji have shown that many well-known hook-length formulas admit modular analogues. In this paper we present a variant of the Han-Ji `multiplication theorem' based on a new analogue of Littlewood's decomposition. We discuss several applications to hook-length formulas, one of which leads us to conjecture a modular analogue of the q,t-Nekrasov-Okounkov formula.
@article{SLC_2020_81_a2,
author = {Adam Walsh and S. Ole Warnaar},
title = {Modular {Nekrasov-Okounkov} {Formulas}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {81},
year = {2020},
url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a2/}
}
Adam Walsh; S. Ole Warnaar. Modular Nekrasov-Okounkov Formulas. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a2/