Modular Nekrasov-Okounkov Formulas
Séminaire lotharingien de combinatoire, Tome 81 (2020)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Using Littlewood's map, which decomposes a partition into its r-core and r-quotient, Han and Ji have shown that many well-known hook-length formulas admit modular analogues. In this paper we present a variant of the Han-Ji `multiplication theorem' based on a new analogue of Littlewood's decomposition. We discuss several applications to hook-length formulas, one of which leads us to conjecture a modular analogue of the q,t-Nekrasov-Okounkov formula.

@article{SLC_2020_81_a2,
     author = {Adam Walsh and S. Ole Warnaar},
     title = {Modular {Nekrasov-Okounkov} {Formulas}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {81},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a2/}
}
TY  - JOUR
AU  - Adam Walsh
AU  - S. Ole Warnaar
TI  - Modular Nekrasov-Okounkov Formulas
JO  - Séminaire lotharingien de combinatoire
PY  - 2020
VL  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2020_81_a2/
ID  - SLC_2020_81_a2
ER  - 
%0 Journal Article
%A Adam Walsh
%A S. Ole Warnaar
%T Modular Nekrasov-Okounkov Formulas
%J Séminaire lotharingien de combinatoire
%D 2020
%V 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2020_81_a2/
%F SLC_2020_81_a2
Adam Walsh; S. Ole Warnaar. Modular Nekrasov-Okounkov Formulas. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a2/