A Generalization of Schur's P- and Q-Functions
Séminaire lotharingien de combinatoire, Tome 81 (2020)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We introduce and study a generalization of Schur's P-/Q-functions associated with a polynomial sequence, which can be viewed as ``Macdonald's ninth variation'' for P-/Q-functions. This variation includes as special cases Schur's P-/Q-functions, Ivanov's factorial P-/Q-functions and the t=-1 specialization of Hall-Littlewood functions associated with the classical root systems. We establish several identities and properties such as generalizations of Schur's original definition of Schur's Q-functions, a Cauchy-type identity, a generalization of the Józefiak-Pragacz-Nimmo formula for skew Q-functions, and a Pieri-type rule for multiplication.

@article{SLC_2020_81_a10,
     author = {Soichi Okada},
     title = {A {Generalization} of {Schur's} {P-} and {Q-Functions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {81},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a10/}
}
TY  - JOUR
AU  - Soichi Okada
TI  - A Generalization of Schur's P- and Q-Functions
JO  - Séminaire lotharingien de combinatoire
PY  - 2020
VL  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2020_81_a10/
ID  - SLC_2020_81_a10
ER  - 
%0 Journal Article
%A Soichi Okada
%T A Generalization of Schur's P- and Q-Functions
%J Séminaire lotharingien de combinatoire
%D 2020
%V 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2020_81_a10/
%F SLC_2020_81_a10
Soichi Okada. A Generalization of Schur's P- and Q-Functions. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a10/