A Generalization of Schur's P- and Q-Functions
Séminaire lotharingien de combinatoire, Tome 81 (2020)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We introduce and study a generalization of Schur's P-/Q-functions associated with a polynomial sequence, which can be viewed as ``Macdonald's ninth variation'' for P-/Q-functions. This variation includes as special cases Schur's P-/Q-functions, Ivanov's factorial P-/Q-functions and the t=-1 specialization of Hall-Littlewood functions associated with the classical root systems. We establish several identities and properties such as generalizations of Schur's original definition of Schur's Q-functions, a Cauchy-type identity, a generalization of the Józefiak-Pragacz-Nimmo formula for skew Q-functions, and a Pieri-type rule for multiplication.
@article{SLC_2020_81_a10,
author = {Soichi Okada},
title = {A {Generalization} of {Schur's} {P-} and {Q-Functions}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {81},
year = {2020},
url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a10/}
}
Soichi Okada. A Generalization of Schur's P- and Q-Functions. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a10/