The Fully Parametrized Asymmetric Exclusion Process With Annihilation
Séminaire lotharingien de combinatoire, Tome 81 (2020)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
An algebraic framework is presented for the investigation of a fully parametrized version of the model of an asymmetric exclusion process with annihilation, as introduced by A. Ayyer and K. Mallick. It features a skewed tensor product and its behavior under the transformation with Hadamard matrices. The eigenvalues of the generator matrices are obtained from a more general determinant evaluation in this algebraic context. The partition functions in the fully parametrized model are obtained with the help of transfer matrices, along the lines drawn by Ayyer and Mallick, taking advantage of the algebraic setting.
@article{SLC_2020_81_a0,
author = {Volker Strehl},
title = {The {Fully} {Parametrized} {Asymmetric} {Exclusion} {Process} {With} {Annihilation}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {81},
year = {2020},
url = {http://geodesic.mathdoc.fr/item/SLC_2020_81_a0/}
}
Volker Strehl. The Fully Parametrized Asymmetric Exclusion Process With Annihilation. Séminaire lotharingien de combinatoire, Tome 81 (2020). http://geodesic.mathdoc.fr/item/SLC_2020_81_a0/