Generalized Sylvester Formulas and Skew Giambelli Identities
Séminaire lotharingien de combinatoire, Tome 80 (2019-2021)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We obtain a common generalization of two types of Sylvester formulas for compound determinants and its Pfaffian analogue. As applications, we give generalizations of the Giambelli identity to skew Schur functions and the Schur identity to Schur's skew Q-functions.
@article{SLC_2019-2021_80_a4,
author = {Soichi Okada},
title = {Generalized {Sylvester} {Formulas} and {Skew} {Giambelli} {Identities}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80},
year = {2019-2021},
url = {http://geodesic.mathdoc.fr/item/SLC_2019-2021_80_a4/}
}
Soichi Okada. Generalized Sylvester Formulas and Skew Giambelli Identities. Séminaire lotharingien de combinatoire, Tome 80 (2019-2021). http://geodesic.mathdoc.fr/item/SLC_2019-2021_80_a4/