On the Cycle Structure of the Product of Random Maximal Cycles
Séminaire lotharingien de combinatoire, Tome 80 (2019-2021)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The subject of this paper is the cycle structure of the random permutation σ of [N], which is the product of k independent random cycles of maximal length N. We use the character-based Fourier transform to study the counts of cycles of σ by length and also the distribution of the elements of the subset [l] among the cycles of σ.

@article{SLC_2019-2021_80_a1,
     author = {Mikl\'os B\'ona and Boris Pittel},
     title = {On the {Cycle} {Structure} of the {Product} of {Random} {Maximal} {Cycles}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80},
     year = {2019-2021},
     url = {http://geodesic.mathdoc.fr/item/SLC_2019-2021_80_a1/}
}
TY  - JOUR
AU  - Miklós Bóna
AU  - Boris Pittel
TI  - On the Cycle Structure of the Product of Random Maximal Cycles
JO  - Séminaire lotharingien de combinatoire
PY  - 2019-2021
VL  - 80
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2019-2021_80_a1/
ID  - SLC_2019-2021_80_a1
ER  - 
%0 Journal Article
%A Miklós Bóna
%A Boris Pittel
%T On the Cycle Structure of the Product of Random Maximal Cycles
%J Séminaire lotharingien de combinatoire
%D 2019-2021
%V 80
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2019-2021_80_a1/
%F SLC_2019-2021_80_a1
Miklós Bóna; Boris Pittel. On the Cycle Structure of the Product of Random Maximal Cycles. Séminaire lotharingien de combinatoire, Tome 80 (2019-2021). http://geodesic.mathdoc.fr/item/SLC_2019-2021_80_a1/