On the Cycle Structure of the Product of Random Maximal Cycles
Séminaire lotharingien de combinatoire, Tome 80 (2019-2021)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
The subject of this paper is the cycle structure of the random permutation σ of [N], which is the product of k independent random cycles of maximal length N. We use the character-based Fourier transform to study the counts of cycles of σ by length and also the distribution of the elements of the subset [l] among the cycles of σ.
@article{SLC_2019-2021_80_a1,
author = {Mikl\'os B\'ona and Boris Pittel},
title = {On the {Cycle} {Structure} of the {Product} of {Random} {Maximal} {Cycles}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80},
year = {2019-2021},
url = {http://geodesic.mathdoc.fr/item/SLC_2019-2021_80_a1/}
}
Miklós Bóna; Boris Pittel. On the Cycle Structure of the Product of Random Maximal Cycles. Séminaire lotharingien de combinatoire, Tome 80 (2019-2021). http://geodesic.mathdoc.fr/item/SLC_2019-2021_80_a1/