Cluster Fan of z-Vectors and Toric Degenerations
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
For a cluster algebra, we introduce and study a notion of z-vectors. We prove that z-vectors determine cluster variables. We associate to a cluster seed a simplicial cone being span by z-vectors of the cluster variables of this seed. These cones form a fan, a polyhedral complex, such that the dual graph of this complex is the Fomin-Zelevinsky exchange graph of the cluster algebra.
@article{SLC_2018_80B_a95,
author = {Gleb Koshevoy},
title = {Cluster {Fan} of {z-Vectors} and {Toric} {Degenerations}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a95/}
}
Gleb Koshevoy. Cluster Fan of z-Vectors and Toric Degenerations. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a95/