Dual Equivalence Graphs and CAT(0) Combinatorics
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

In this paper we explore the combinatorial structure of dual equivalence graphs Gλ. The vertices are Standard Young tableaux of a fixed shape λ that allows us to further understand the combinatorial structure of Gλ, and the edges are given by dual Knuth equivalences. The graph Gλ is the 1-skeleton of a cubical complex Cλ, and one can ask whether the cubical complex is CAT(0); this is a desirable metric property that allows us to describe the combinatorial structure of Gλ very explicitly. We prove that Cλ is CAT(0) if and only if λ is a hook.

@article{SLC_2018_80B_a91,
     author = {Anastasia Chavez and John Guo},
     title = {Dual {Equivalence} {Graphs} and {CAT(0)} {Combinatorics}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a91/}
}
TY  - JOUR
AU  - Anastasia Chavez
AU  - John Guo
TI  - Dual Equivalence Graphs and CAT(0) Combinatorics
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a91/
ID  - SLC_2018_80B_a91
ER  - 
%0 Journal Article
%A Anastasia Chavez
%A John Guo
%T Dual Equivalence Graphs and CAT(0) Combinatorics
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a91/
%F SLC_2018_80B_a91
Anastasia Chavez; John Guo. Dual Equivalence Graphs and CAT(0) Combinatorics. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a91/