The Kernel of Chromatic Quasisymmetric Functions on Graphs and Nestohedra
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We study the chromatic symmetric function on graphs, and show that its kernel is spanned by the modular relations. We generalise this result to the chromatic quasisymmetric function on nestohedra, a family of generalised permutahedra. We use this description of the kernel of the chromatic symmetric function to find other graph invariants that may help us tackle the tree conjecture.
@article{SLC_2018_80B_a9,
author = {Raul Penaguiao},
title = {The {Kernel} of {Chromatic} {Quasisymmetric} {Functions} on {Graphs} and {Nestohedra}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a9/}
}
Raul Penaguiao. The Kernel of Chromatic Quasisymmetric Functions on Graphs and Nestohedra. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a9/