From Generalized Permutahedra to Grothendieck Polynomials via Flow Polytopes
Séminaire lotharingien de combinatoire, 80B (2018) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We present positivity conjectures for the Schur expansion of Jack symmetric functions in two bases given by binomial coefficients. Partial results suggest that there are rich combinatorics to be found in these bases, including Eulerian numbers, Stirling numbers, quasi-Yamanouchi tableaux, and rook boards. These results also lead to further conjectures about the fundamental quasisymmetric expansions of these bases, which we prove for special cases.

@article{SLC_2018_80B_a89,
     author = {Per Alexandersson and Jim Haglund, and George Wang},
     title = {From {Generalized} {Permutahedra} to {Grothendieck} {Polynomials} via {Flow} {Polytopes}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2018},
     volume = {80B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a89/}
}
TY  - JOUR
AU  - Per Alexandersson
AU  - Jim Haglund,
AU  - George Wang
TI  - From Generalized Permutahedra to Grothendieck Polynomials via Flow Polytopes
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a89/
ID  - SLC_2018_80B_a89
ER  - 
%0 Journal Article
%A Per Alexandersson
%A Jim Haglund,
%A George Wang
%T From Generalized Permutahedra to Grothendieck Polynomials via Flow Polytopes
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a89/
%F SLC_2018_80B_a89
Per Alexandersson; Jim Haglund,; George Wang. From Generalized Permutahedra to Grothendieck Polynomials via Flow Polytopes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a89/