On the Cone of f-Vectors of Cubical Polytopes
Séminaire lotharingien de combinatoire, 80B (2018)
What is the minimal closed cone containing all f-vectors of cubical d-polytopes? We construct cubical polytopes showing that this cone, expressed in the cubical g-vector coordinates, contains the nonnegative g-orthant, thus verifying one direction of the Cubical Generalized Lower Bound Conjecture of Babson, Billera and Chan. Our polytopes also show that a natural cubical analogue of the simplicial Generalized Lower Bound Theorem does not hold.
@article{SLC_2018_80B_a84,
author = {Ron M. Adin and Daniel Kalmanovich, and Eran Nevo},
title = {On the {Cone} of {f-Vectors} of {Cubical} {Polytopes}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2018},
volume = {80B},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a84/}
}
Ron M. Adin; Daniel Kalmanovich,; Eran Nevo. On the Cone of f-Vectors of Cubical Polytopes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a84/