On the Cone of f-Vectors of Cubical Polytopes
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

What is the minimal closed cone containing all f-vectors of cubical d-polytopes? We construct cubical polytopes showing that this cone, expressed in the cubical g-vector coordinates, contains the nonnegative g-orthant, thus verifying one direction of the Cubical Generalized Lower Bound Conjecture of Babson, Billera and Chan. Our polytopes also show that a natural cubical analogue of the simplicial Generalized Lower Bound Theorem does not hold.

@article{SLC_2018_80B_a84,
     author = {Ron M. Adin and Daniel Kalmanovich, and Eran Nevo},
     title = {On the {Cone} of {f-Vectors} of {Cubical} {Polytopes}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a84/}
}
TY  - JOUR
AU  - Ron M. Adin
AU  - Daniel Kalmanovich,
AU  - Eran Nevo
TI  - On the Cone of f-Vectors of Cubical Polytopes
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a84/
ID  - SLC_2018_80B_a84
ER  - 
%0 Journal Article
%A Ron M. Adin
%A Daniel Kalmanovich,
%A Eran Nevo
%T On the Cone of f-Vectors of Cubical Polytopes
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a84/
%F SLC_2018_80B_a84
Ron M. Adin; Daniel Kalmanovich,; Eran Nevo. On the Cone of f-Vectors of Cubical Polytopes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a84/