On the Cone of f-Vectors of Cubical Polytopes
Séminaire lotharingien de combinatoire, 80B (2018)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

What is the minimal closed cone containing all f-vectors of cubical d-polytopes? We construct cubical polytopes showing that this cone, expressed in the cubical g-vector coordinates, contains the nonnegative g-orthant, thus verifying one direction of the Cubical Generalized Lower Bound Conjecture of Babson, Billera and Chan. Our polytopes also show that a natural cubical analogue of the simplicial Generalized Lower Bound Theorem does not hold.

@article{SLC_2018_80B_a84,
     author = {Ron M. Adin and Daniel Kalmanovich, and Eran Nevo},
     title = {On the {Cone} of {f-Vectors} of {Cubical} {Polytopes}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2018},
     volume = {80B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a84/}
}
TY  - JOUR
AU  - Ron M. Adin
AU  - Daniel Kalmanovich,
AU  - Eran Nevo
TI  - On the Cone of f-Vectors of Cubical Polytopes
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a84/
ID  - SLC_2018_80B_a84
ER  - 
%0 Journal Article
%A Ron M. Adin
%A Daniel Kalmanovich,
%A Eran Nevo
%T On the Cone of f-Vectors of Cubical Polytopes
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a84/
%F SLC_2018_80B_a84
Ron M. Adin; Daniel Kalmanovich,; Eran Nevo. On the Cone of f-Vectors of Cubical Polytopes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a84/