Product Formulas for Standard Tableaux of a Family of Skew Shapes
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We give new product formulas for the number of standard Young tableaux of a six parameter family of skew shapes generalizing a formula by DeWitt and a formula of Kim and Oh. These are proved by utilizing symmetries for evaluations of factorial Schur functions and the Naruse hook length formula for skew shapes.
@article{SLC_2018_80B_a83,
author = {Alejandro H. Morales and Igor Pak, and Greta Panova},
title = {Product {Formulas} for {Standard} {Tableaux} of a {Family} of {Skew} {Shapes}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a83/}
}
Alejandro H. Morales; Igor Pak,; Greta Panova. Product Formulas for Standard Tableaux of a Family of Skew Shapes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a83/