Product Formulas for Standard Tableaux of a Family of Skew Shapes
Séminaire lotharingien de combinatoire, 80B (2018)
We give new product formulas for the number of standard Young tableaux of a six parameter family of skew shapes generalizing a formula by DeWitt and a formula of Kim and Oh. These are proved by utilizing symmetries for evaluations of factorial Schur functions and the Naruse hook length formula for skew shapes.
@article{SLC_2018_80B_a83,
author = {Alejandro H. Morales and Igor Pak, and Greta Panova},
title = {Product {Formulas} for {Standard} {Tableaux} of a {Family} of {Skew} {Shapes}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2018},
volume = {80B},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a83/}
}
Alejandro H. Morales; Igor Pak,; Greta Panova. Product Formulas for Standard Tableaux of a Family of Skew Shapes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a83/