The Orbit Algebra of an Oligomorphic Permutation Group with Polynomial Profile is Cohen-Macaulay
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Let G be a group of permutations of a denumerable set E. The profile of G is the function φG which counts, for each n, the (possibly infinite) number φG(n) of orbits of G acting on the n-subsets of E. Counting functions arising this way, and their associated generating series, form a rich yet apparently strongly constrained class. In particular, Cameron conjectured in the late seventies that, whenever φG(n) is bounded by a polynomial, it is asymptotically equivalent to a polynomial. In 1985, Macpherson further asked if the \textbf{orbit algebra} of G - a graded commutative algebra invented by Cameron and whose Hilbert function is φG - is finitely generated.

In this paper we announce a proof of a stronger statement: the orbit algebra is Cohen Macaulay; it follows that the generating series of the profile is a rational fraction whose denominator admits a combinatorial description and the numerator is non-negative.

The proof uses classical techniques from actions of permutation groups, commutative algebra, and invariant theory; it steps towards a classification of ages of permutation groups with profile bounded by a polynomial.

@article{SLC_2018_80B_a82,
     author = {Justine Falque and Nicolas M. Thi\'ery},
     title = {The {Orbit} {Algebra} of an {Oligomorphic} {Permutation} {Group} with {Polynomial} {Profile} is {Cohen-Macaulay}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a82/}
}
TY  - JOUR
AU  - Justine Falque
AU  - Nicolas M. Thiéry
TI  - The Orbit Algebra of an Oligomorphic Permutation Group with Polynomial Profile is Cohen-Macaulay
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a82/
ID  - SLC_2018_80B_a82
ER  - 
%0 Journal Article
%A Justine Falque
%A Nicolas M. Thiéry
%T The Orbit Algebra of an Oligomorphic Permutation Group with Polynomial Profile is Cohen-Macaulay
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a82/
%F SLC_2018_80B_a82
Justine Falque; Nicolas M. Thiéry. The Orbit Algebra of an Oligomorphic Permutation Group with Polynomial Profile is Cohen-Macaulay. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a82/