Properties of the Edelman-Greene Bijection
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Edelman and Greene constructed a bijective correspondence between the reduced words of the reverse permutation in the symmetric group Sn and standard Young tableaux of the staircase shape (n-1, n-2, ..., 1). Our motivation originates from random sorting networks, a line of research initiated by Angel, Holroyd, Romik and Virág. We reformulate one of their conjectures on the shapes of intermediate configurations coming from random sorting networks. Properties of the Edelman-Greene bijection restricted to 132-avoiding and 2143-avoiding permutations are presented. We also consider the Edelman-Greene bijection applied to non-reduced words.
@article{SLC_2018_80B_a78,
author = {Svante Linusson and Samu Potka},
title = {Properties of the {Edelman-Greene} {Bijection}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a78/}
}
Svante Linusson; Samu Potka. Properties of the Edelman-Greene Bijection. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a78/