A Pieri Rule for Key Polynomials
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We conjecture a cancellation-free expansion for the product of a key polynomial and a single row key polynomial, generalizing Pieri's rule for computing the product of a Schur function with a single row Schur function.

@article{SLC_2018_80B_a77,
     author = {Sami Assaf and Danjoseph Quijada},
     title = {A {Pieri} {Rule} for {Key} {Polynomials}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a77/}
}
TY  - JOUR
AU  - Sami Assaf
AU  - Danjoseph Quijada
TI  - A Pieri Rule for Key Polynomials
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a77/
ID  - SLC_2018_80B_a77
ER  - 
%0 Journal Article
%A Sami Assaf
%A Danjoseph Quijada
%T A Pieri Rule for Key Polynomials
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a77/
%F SLC_2018_80B_a77
Sami Assaf; Danjoseph Quijada. A Pieri Rule for Key Polynomials. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a77/