The Canonical Join Complex of the Tamari Lattice
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

In this paper, we study a simplicial complex on the elements of the Tamari lattice in types A and B called the canonical join complex. The canonical join representation of an element w in a lattice L is the unique lowest expression VA for w. We abuse notation and also say that the set A is a canonical join representation (when we mean VA is a canonical join representation). The collection of all such subsets is an abstract simplicial complex called the canonical join complex of L.

We realize the canonical join complex of the Tamari lattice as a complex of noncrossing arc diagrams, give a shelling order on its facets, and show that it is homotopy equivalent to a wedge of Catalan-many spheres.

@article{SLC_2018_80B_a74,
     author = {Emily Barnard},
     title = {The {Canonical} {Join} {Complex} of the {Tamari} {Lattice}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a74/}
}
TY  - JOUR
AU  - Emily Barnard
TI  - The Canonical Join Complex of the Tamari Lattice
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a74/
ID  - SLC_2018_80B_a74
ER  - 
%0 Journal Article
%A Emily Barnard
%T The Canonical Join Complex of the Tamari Lattice
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a74/
%F SLC_2018_80B_a74
Emily Barnard. The Canonical Join Complex of the Tamari Lattice. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a74/