Bases of the Quantum Matrix Bialgebra and Induced Sign Characters of the Hecke Algebra
Séminaire lotharingien de combinatoire, 80B (2018)
We combinatorially describe the transition matrices which relate monomial bases of the zero-weight space of the quantum matrix bialgebra. This description leads to a combinatorial rule for evaluating induced sign characters of the (type A) Hecke algebra Hn(q) at all elements of the form (1 + Tsi1) ... (1 + Tsim), including the Kazhdan-Lusztig basis elements indexed by 321-hexagon-avoiding permutations. This result is the first subtraction-free rule for evaluating any character at all elements of a basis of Hn(q).
@article{SLC_2018_80B_a73,
author = {Ryan Kaliszewski and Justin Lambright, and Mark Skandera},
title = {Bases of the {Quantum} {Matrix} {Bialgebra} and {Induced} {Sign} {Characters} of the {Hecke} {Algebra}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2018},
volume = {80B},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a73/}
}
TY - JOUR AU - Ryan Kaliszewski AU - Justin Lambright, AU - Mark Skandera TI - Bases of the Quantum Matrix Bialgebra and Induced Sign Characters of the Hecke Algebra JO - Séminaire lotharingien de combinatoire PY - 2018 VL - 80B UR - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a73/ ID - SLC_2018_80B_a73 ER -
Ryan Kaliszewski; Justin Lambright,; Mark Skandera. Bases of the Quantum Matrix Bialgebra and Induced Sign Characters of the Hecke Algebra. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a73/